
Figure 8.10 The semipermeable membrane of a biological cell has different
concentrations of ions on its interior surface than on its exterior. Diffusion moves

the K+ (potassium) and Cl– (chloride) ions in the directions shown, until the

Coulomb force halts further transfer. In this way, the exterior of the membrane
acquires a positive charge and its interior surface acquires a negative charge,
creating a potential difference across the membrane. The membrane is normally
impermeable to Na+ (sodium ions).

Visit the PhET Explorations: Capacitor Lab (https://openstaxcollege.org/l/21phetcapacitor) to
explore how a capacitor works. Change the size of the plates and add a dielectric to see the effect on capacitance.
Change the voltage and see charges built up on the plates. Observe the electrical field in the capacitor. Measure the
voltage and the electrical field.

8.2 | Capacitors in Series and in Parallel

Learning Objectives

By the end of this section, you will be able to:

• Explain how to determine the equivalent capacitance of capacitors in series and in parallel
combinations

• Compute the potential difference across the plates and the charge on the plates for a capacitor
in a network and determine the net capacitance of a network of capacitors

Several capacitors can be connected together to be used in a variety of applications. Multiple connections of capacitors
behave as a single equivalent capacitor. The total capacitance of this equivalent single capacitor depends both on the
individual capacitors and how they are connected. Capacitors can be arranged in two simple and common types of
connections, known as series and parallel, for which we can easily calculate the total capacitance. These two basic
combinations, series and parallel, can also be used as part of more complex connections.

The Series Combination of Capacitors
Figure 8.11 illustrates a series combination of three capacitors, arranged in a row within the circuit. As for any capacitor,
the capacitance of the combination is related to the charge and voltage by using Equation 8.1. When this series
combination is connected to a battery with voltage V, each of the capacitors acquires an identical charge Q. To explain,
first note that the charge on the plate connected to the positive terminal of the battery is +Q and the charge on the plate

connected to the negative terminal is −Q . Charges are then induced on the other plates so that the sum of the charges on

all plates, and the sum of charges on any pair of capacitor plates, is zero. However, the potential drop V1 = Q/C1 on one

Chapter 8 | Capacitance 355

https://openstaxcollege.org/l/21phetcapacitor


capacitor may be different from the potential drop V2 = Q/C2 on another capacitor, because, generally, the capacitors may

have different capacitances. The series combination of two or three capacitors resembles a single capacitor with a smaller
capacitance. Generally, any number of capacitors connected in series is equivalent to one capacitor whose capacitance
(called the equivalent capacitance) is smaller than the smallest of the capacitances in the series combination. Charge on this
equivalent capacitor is the same as the charge on any capacitor in a series combination: That is, all capacitors of a series
combination have the same charge. This occurs due to the conservation of charge in the circuit. When a charge Q in a series
circuit is removed from a plate of the first capacitor (which we denote as −Q ), it must be placed on a plate of the second

capacitor (which we denote as +Q), and so on.

Figure 8.11 (a) Three capacitors are connected in series. The magnitude of the charge on each plate
is Q. (b) The network of capacitors in (a) is equivalent to one capacitor that has a smaller capacitance
than any of the individual capacitances in (a), and the charge on its plates is Q.

We can find an expression for the total (equivalent) capacitance by considering the voltages across the individual capacitors.
The potentials across capacitors 1, 2, and 3 are, respectively, V1 = Q/C1 , V2 = Q/C2 , and V3 = Q/C3 . These potentials

must sum up to the voltage of the battery, giving the following potential balance:

V = V1 + V2 + V3.

Potential V is measured across an equivalent capacitor that holds charge Q and has an equivalent capacitance CS . Entering

the expressions for V1 , V2 , and V3 , we get

Q
CS

= Q
C1

+ Q
C2

+ Q
C3

.

Canceling the charge Q, we obtain an expression containing the equivalent capacitance, CS , of three capacitors connected

in series:

1
CS

= 1
C1

+ 1
C2

+ 1
C3

.

This expression can be generalized to any number of capacitors in a series network.

Series Combination

For capacitors connected in a series combination, the reciprocal of the equivalent capacitance is the sum of reciprocals
of individual capacitances:

(8.7)1
CS

= 1
C1

+ 1
C2

+ 1
C3

+ ⋯.
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Example 8.4

Equivalent Capacitance of a Series Network

Find the total capacitance for three capacitors connected in series, given their individual capacitances are
1.000 µF , 5.000 µF , and 8.000 µF .

Strategy

Because there are only three capacitors in this network, we can find the equivalent capacitance by using
Equation 8.7 with three terms.

Solution

We enter the given capacitances into Equation 8.7:

1
CS

= 1
C1

+ 1
C2

+ 1
C3

= 1
1.000 µF + 1

5.000 µF + 1
8.000 µF

1
CS

= 1.325
µF .

Now we invert this result and obtain CS = µF
1.325 = 0.755 µF.

Significance

Note that in a series network of capacitors, the equivalent capacitance is always less than the smallest individual
capacitance in the network.

The Parallel Combination of Capacitors
A parallel combination of three capacitors, with one plate of each capacitor connected to one side of the circuit and the other
plate connected to the other side, is illustrated in Figure 8.12(a). Since the capacitors are connected in parallel, they all
have the same voltage V across their plates. However, each capacitor in the parallel network may store a different charge.
To find the equivalent capacitance CP of the parallel network, we note that the total charge Q stored by the network is the

sum of all the individual charges:

Q = Q1 + Q2 + Q3.

On the left-hand side of this equation, we use the relation Q = CP V , which holds for the entire network. On the right-

hand side of the equation, we use the relations Q1 = C1 V , Q2 = C2 V , and Q3 = C3 V for the three capacitors in the

network. In this way we obtain

CP V = C1 V + C2 V + C3 V .

This equation, when simplified, is the expression for the equivalent capacitance of the parallel network of three capacitors:

CP = C1 + C2 + C3.

This expression is easily generalized to any number of capacitors connected in parallel in the network.

Parallel Combination

For capacitors connected in a parallel combination, the equivalent (net) capacitance is the sum of all individual
capacitances in the network,

(8.8)CP = C1 + C2 + C3 + ⋯.
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Figure 8.12 (a) Three capacitors are connected in parallel. Each
capacitor is connected directly to the battery. (b) The charge on the
equivalent capacitor is the sum of the charges on the individual
capacitors.

Example 8.5

Equivalent Capacitance of a Parallel Network

Find the net capacitance for three capacitors connected in parallel, given their individual capacitances are
1.0 µF, 5.0 µF, and 8.0 µF.

Strategy

Because there are only three capacitors in this network, we can find the equivalent capacitance by using
Equation 8.8 with three terms.

Solution

Entering the given capacitances into Equation 8.8 yields

CP = C1 + C2 + C3 = 1.0 µF + 5.0 µF + 8.0 µF
CP = 14.0 µF.

Significance

Note that in a parallel network of capacitors, the equivalent capacitance is always larger than any of the individual
capacitances in the network.

Capacitor networks are usually some combination of series and parallel connections, as shown in Figure 8.13. To find the
net capacitance of such combinations, we identify parts that contain only series or only parallel connections, and find their
equivalent capacitances. We repeat this process until we can determine the equivalent capacitance of the entire network.
The following example illustrates this process.
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Figure 8.13 (a) This circuit contains both series and parallel connections of capacitors. (b) C1 and C2 are in series;

their equivalent capacitance is CS. (c) The equivalent capacitance CS is connected in parallel with C3. Thus, the

equivalent capacitance of the entire network is the sum of CS and C3.

Example 8.6

Equivalent Capacitance of a Network

Find the total capacitance of the combination of capacitors shown in Figure 8.13. Assume the capacitances are
known to three decimal places (C1 = 1.000 µF, C2 = 5.000 µF, C3 = 8.000 µF). Round your answer to three

decimal places.

Strategy

We first identify which capacitors are in series and which are in parallel. Capacitors C1 and C2 are in series.

Their combination, labeled CS, is in parallel with C3.

Solution

Since C1 and C2 are in series, their equivalent capacitance CS is obtained with Equation 8.7:

1
CS

= 1
C1

+ 1
C2

= 1
1.000 µF + 1

5.000 µF = 1.200
µF ⇒ CS = 0.833 µF.

Capacitance CS is connected in parallel with the third capacitance C3 , so we use Equation 8.8 to find the

equivalent capacitance C of the entire network:

C = CS + C3 = 0.833 µF + 8.000 µF = 8.833 µF.

Example 8.7

Network of Capacitors

Determine the net capacitance C of the capacitor combination shown in Figure 8.14 when the capacitances are
C1 = 12.0 µF, C2 = 2.0 µF, and C3 = 4.0 µF . When a 12.0-V potential difference is maintained across the

combination, find the charge and the voltage across each capacitor.
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Figure 8.14 (a) A capacitor combination. (b) An equivalent two-capacitor combination.

Strategy

We first compute the net capacitance C23 of the parallel connection C2 and C3 . Then C is the net capacitance

of the series connection C1 and C23 . We use the relation C = Q/V to find the charges Q1 , Q2 , and Q3 , and

the voltages V1 , V2 , and V3 , across capacitors 1, 2, and 3, respectively.

Solution

The equivalent capacitance for C2 and C3 is

C23 = C2 + C3 = 2.0 µF + 4.0 µF = 6.0 µF.

The entire three-capacitor combination is equivalent to two capacitors in series,

1
C = 1

12.0 µF + 1
6.0 µF = 1

4.0 µF ⇒ C = 4.0 µF.

Consider the equivalent two-capacitor combination in Figure 8.14(b). Since the capacitors are in series, they
have the same charge, Q1 = Q23 . Also, the capacitors share the 12.0-V potential difference, so

12.0 V = V1 + V23 = Q1
C1

+ Q23
C23

= Q1
12.0 µF + Q1

6.0 µF ⇒ Q1 = 48.0 µC.

Now the potential difference across capacitor 1 is

V1 = Q1
C1

= 48.0 µC
12.0 µF = 4.0 V.

Because capacitors 2 and 3 are connected in parallel, they are at the same potential difference:

V2 = V3 = 12.0 V − 4.0 V = 8.0 V.

Hence, the charges on these two capacitors are, respectively,

Q2 = C2 V2 = (2.0 µF)(8.0 V) = 16.0 µC,
Q3 = C3 V3 = (4.0 µF)(8.0 V) = 32.0 µC.

Significance

As expected, the net charge on the parallel combination of C2 and C3 is Q23 = Q2 + Q3 = 48.0 µC.
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8.5 Check Your Understanding Determine the net capacitance C of each network of capacitors shown
below. Assume that C1 = 1.0 pF , C2 = 2.0 pF , C3 = 4.0 pF , and C4 = 5.0 pF . Find the charge on each

capacitor, assuming there is a potential difference of 12.0 V across each network.

8.3 | Energy Stored in a Capacitor

Learning Objectives

By the end of this section, you will be able to:

• Explain how energy is stored in a capacitor

• Use energy relations to determine the energy stored in a capacitor network

Most of us have seen dramatizations of medical personnel using a defibrillator to pass an electrical current through a
patient’s heart to get it to beat normally. Often realistic in detail, the person applying the shock directs another person to
“make it 400 joules this time.” The energy delivered by the defibrillator is stored in a capacitor and can be adjusted to fit the
situation. SI units of joules are often employed. Less dramatic is the use of capacitors in microelectronics to supply energy
when batteries are charged (Figure 8.15). Capacitors are also used to supply energy for flash lamps on cameras.
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